Симпато адреналовая система это

Симпатоадреналовая система и биологически активные вещества

Симпатоадреналовая система (САС) — сложная многокомпо­нентная система, регулирующая превращение нервных импульсов в гуморальные и участвующая в метаболических процессах в орга­низме. Исполнительными органами этой системы являются нерв­ные окончания, мозговой слой надпочечников, энтерохромаффин-ная ткань. Регуляция этих механизмов происходит в основном в ги­поталамусе, мезэнцефальной области, находящихся, в свою очередь, под контролем вышележащих отделов ЦНС и периферических нерв­ных образований. Причем катехоламины (КТ) составляют основное звено САС и активно участвуют в процессах, обеспечивающих со­зревание женского организма.

Установлена связь экскреции катехоламинов и лютеинизирующего гормона в течение менструального цикла, стимулирующая роль в овуляторном выбросе гипоталамического рилизинг-гормона (ГТ РГ) и лютеинизирующего гормона (ЛГ) и значение их при нару­шении репродуктивной функции. Доказано участие КТ в активации других гормональных систем; в частности, через р-адренорецепторы юкстагломерулярного аппарата почек они регулируют активность ренина, метаболизм и синтез простагландинов.

Известно, что САС оказывает большое влияние на обменные (жировой обмен) и окислительно-восстановительные процессы. До­статочно четко определено значение САС в адаптационных процес­сах организма.

Выделены и синтезированы классические синтетические нейро-трансмиттеры: биологические амины — катехоламины — дофамин (ДА), норадреналин (НА), индолы, серотонин и новый класс мор-финоподобных опиоидных нейропептидов.

Катехоламины — высокоэффективные физиологические вещества, выполняющие роль нейромедиаторов центральной и симпатической нервной системы, они отличаются многогранным участием в физиологических и патологических процессах организма. Катехоламины, обра­зующиеся в мозговой ткани, составляют небольшую фракцию общего пула в организме. Концентрация КТ в крови меньше, чем в моче.

Инактивация КТ в тканях происходит под влиянием моноами-нооксидазы (МАО). Высвобождение КТ регулируется эндогенными биологически активными веществами. Простагландины группы «Е» тормозят высвобождение НА и ослабляют адренергический ответ; простагландины группы «F» усиливают высвобождение медиатора при нервной стимуляции.

Концентрация норадреналина (НА) отражает состояние медиа-торного, т.е. нервного звена САС, адреналина (А) — гормонального; дофамин и ДОФА характеризуют резервные возможности САС. По­этому отношение НА/А является косвенным показателем активнос­ти медиаторного и гормонального звеньев САС.

Физиология симпатоадреналовой системы

Влияние катехоламинов сказывается на всех основных системах органов. Результаты этого, влияния проявляются в течение секунд по сравнению с минутами, часами или днями, которые характерны для результатов действия эндокринной системы и большинства других систем контроля, регулирующих происходящие в организме процессы. Кроме того, симпатоадреналовая система способна упреждающе реагировать на повышение физических нагрузок. Например, усиление симпатоадреналовой активности перед предстоящей большой физической нагрузкой снизит силу воздействия последней на внутреннюю среду организма.

Прямые эффекты катехоламинов. Сердечно-сосудистая система. Катехоламины стимулируют спазм в сосудистых руслах подкожных и висцеральных сосудов, слизистых оболочек и почек путем опосредования a-адренорецепторами. Однако спазм в системах коронарного и мозгового кровообращения будет минимальным, нормальный приток крови к этим органам сохранится. Адаптивное значение такого предпочтения, отдаваемого сердцу и головному мозгу, очевидно; требования к притоку крови, связанные с обменом веществ, в этих органах чрезвычайно высоки, и их непрерывная перфузия имеет жизненно важное значение . В сосудах скелетных мышц расположены b-адренорецепторы, чувствительные к низким уровням содержания циркулирующего в крови адреналина, и поэтому приток крови к скелетным мышцам усиливается во время активации мозгового слоя надпочечников.

Воздействия катехоламинов на сердце опосредуются черезb1-адренорецепторы и к ним относятся увеличение частоты сердечных сокращений, усиление сократимости миокарда и увеличение скорости проведения возбуждения. Увеличение сократимости миокарда иллюстрируется смещением влево и вверх кривой, характеризующей функцию желудочков сердца. На этой кривой отражена связь работы сердца с длиной волокон миокарда в момент диастолы желудочков; при любой начальной длине волокон катехоламины усиливают работу сердца. Катехоламины увеличивают также минутный объем сердца путем стимулирования веноконстрикции, увеличения венозного возврата и силы сокращения предсердий, тем самым вызывая увеличение диастолического объема, а следовательно, и длины волокон. Ускорение проводимости возбуждения приводит к более синхронным, а следовательно, и более эффективным сокращениям желудочков. Стимуляция работы сердца увеличивает потребление миокардом кислорода, что является важным фактором в патогенезе и лечении ишемической болезни сердца.

Метаболизм. Катехоламины усиливают обмен веществ. Природа биохимических процессов повышенного образования тепла и их локализация у человека неизвестны; у мелких млекопитающих при этом разобщено митохондриальное дыхание в бурой жировой ткани.

Мобилизация субстрата. В ряде тканей катехоламины стимулируют распад энергетических запасов с образованием субстрата для местного потребления; например, гликогенолиз в сердце обеспечивает субстрат для немедленного обмена веществ в миокарде. Катехоламины также ускоряют мобилизацию энергии в печени, жировой ткани и скелетных мышцах, высвобождая соответствующие субстраты (глюкозу, свободные жирные кислоты, лактат) в циркулирующую кровь для использования их по всему организму. Активация ферментов, участвующих в распаде энергетических запасов, происходит посредством b-адренорецепторного (бета 1 ) механизма (липолиз жировой ткани) и a- и b-адренорецепторных (бета2) механизмов (печеночный гликогенолиз и глюконеогенез). В скелетных мышцах катехоламины стимулируют гликогенолиз (b-адренорецептор), тем самым увеличивая отток лактата.

Жидкости и электролиты. Катехоламины участвуют в регуляции объема и состава внеклеточной жидкости; путем прямого действия на почечные канальцы норадреналин стимулирует реабсорбцию натрия, тем самым поддерживая постоянство объема внеклеточной жидкости. Норадреналин и адреналин также усиливают поглощение калия клетками, обеспечивая защиту организма от развития гиперкалиемии. Дофамин усиливает экскрецию натрия. Влияние катехоламинов на метаболизм кальция, магния и фосфора носит сложный характер и зависит от целого ряда факторов.

Внутренние органы. Катехоламины влияют также на функции внутренних органов, воздействуя на гладкую мускулатуру и эпителий желез. Гладкая мускулатура мочевого пузыря и кишечника расслабляется, в то время как соответствующие сфинктеры сокращаются. Опорожнение желчного пузыря также происходит при участии симпатических механизмов. Опосредованное катехоламинами сокращение гладкой мускулатуры у женщин способствует овуляции и транспорту яйцеклетки по маточным трубам, а у мужчин — изгнанию спермы во время эякуляции. Ингибирующие a2-адренорецепторы на холинергических нейронах в кишечнике обеспечивают его расслабление. Посредствомb2-адренорецепторного механизма катехоламины индуцируют расширение бронхов.

Непрямые эффекты катехоламинов. Конечная физиологическая реакция, вызываемая катехоламинами, заключается в изменении секреции гормонов и распределении кровотока; оба этих процесса поддерживают и усиливают прямое действие катехоламинов.

Эндокринная система. Катехоламины оказывают влияние на секрецию ренина, инсулина, глюкагона, кальцитонина, гормона паращитовидных желез, тироксина, гастрина, эритропоэтина, прогестерона и, возможно, тестостерона. Этот процесс регулируется сложными петлями обратной связи. За исключением тироксина и гонадотропных гормонов, эти гормоны (являющиеся полипептидами) не находятся под непосредственным контролем гипофиза. Симпатоадреналовая система обеспечивает регуляцию секреции этих гормонов со стороны центральной нервной системы и гарантирует координированную гормональную реакцию в соответствии с потребностями поддержания гомеостаза организма.

Ренин. Юкстагломерулярный комплекс почек очень густо иннервирован. Симпатическая стимуляция посредством прямого b-адренорецепторного воздействия увеличивает количество высвобождающегося ренина, независимого от изменений тонуса почечных сосудов. Реакция ренина на снижение объема жидкости в результате падения центрального венозного давления также опосредуется через симпатическую часть нервной системы. Секреция ренина активирует ангиотензин-альдостероновую систему, и индуцированное ангиотензином сужение сосудов поддерживает прямое действие катехоламинов на кровеносную систему, в то время как опосредуемая альдостероном реабсорбция натрия дополняет аналогичный процесс, вызванный симпатической стимуляцией. Вещества, блокирующие b-адренорецепторы, подавляют секрецию ренина.

Инсулин и глюкагон. Панкреатические островки также обладают обильной симпатической иннервацией. Стимуляция симпатических нервов поджелудочной железы или увеличение концентрации циркулирующих в крови катехоламинов подавляет секрецию инсулина (процесс опосредуется a2-адренорецепторами) и увеличивает высвобождение глюкагона (опосредуется b-адренорецепторами). Сочетание этих эффектов поддерживает мобилизацию субстратов, усиливая прямое действие катехоламинов на продуцирование глюкозы и липолиз. Как правило, доминирует a-адренорецепторное подавление высвобождения инсулина, однако при некоторых условиях b-адренорецепторный механизм может усиливать секрецию этого гормона.

Симпатоадреналовая функция при некоторых физиологических и патофизиологических состояниях. Обеспечение адекватности кровообращения. Основной функцией симпатической части нервной системы является поддержание адекватного кровообращения. При вертикальном положении тела и уменьшении объема жидкости поток афферентных импульсов от венозных и артериальных барорецепторов уменьшается, снижается их ингибирующее влияние на вазомоторный центр, увеличивая тем самым симпатическую активность (см. рис. 66-2) и уменьшая эфферентный тонус блуждающего нерва. В результате этого увеличивается частота сердечных сокращений, а минутный объем сердца перераспределяется вследствие отведения кровотока от кожи, подкожных тканей, слизистых оболочек и внутренних органов. Благодаря симпатической стимуляции увеличивается реабсорция натрия почками, а также венозный возврат. При выраженной гипотензии в процесс включается мозговое вещество надпочечников и адреналин еще более усиливает действие симпатической части нервной системы. Аналогичный механизм симпатической активации наблюдается в организме после приема пищи, когда происходит секвестрация крови и внеклеточной жидкости в висцеральной системе кровообращения и соответственно в просвете кишки.

Застойная сердечная недостаточность. Благодаря деятельности симпатической части нервной системы обеспечивается поддержка кровообращения при застойной сердечной недостаточности (гл. 182). Веноконстрикция и симпатическая стимуляция сердца увеличивают минутный объем сердца, в то время как сужение периферических сосудов направляет ток крови к сердцу и головному мозгу. В результате повышения венозного давления афферентные. сигналы в этом случае менее четкие, чем при простом уменьшении объема жидкости. При тяжелой сердечной недостаточности истощение запасов норадреналина в сердце снижает эффективность симпатической поддержки кровообращения.

Травма и шок. При остром травматическом повреждении или шоке катехоламины надпочечников принимают участие в поддержании кровотока и мобилизации субстрата. Есть основания полагать, что симпатическая часть нервной системы при этом также активизируется. Во время длительно текущей посттравматической репаративной фазы катехоламины способствуют мобилизации субстратов и интенсифицируют обмен веществ.

Физические нагрузки. Активация симпатической части нервной системы в результате физических нагрузок приводит к увеличению минутного объема сердца, поддерживает кровоток и обеспечивает продуцирование достаточного количества субстратов для удовлетворения повышенных потребностей организма. Факторы, зависимые от центральной нервной системы, такие как антиципация, и факторы, связанные с системой кровообращения, например падение венозного давления, вызывают ответную реакцию со стороны симпатической части нервной системы. Небольшая физическая нагрузка стимулирует только симпатическую часть нервной системы, а более тяжелые нагрузки активизируют также и мозговое вещество надпочечников. Закаливание способствует снижению активности симпатической части нервной системы как в состоянии покоя, так и при нагрузке.

Гипогликемия. Секреция адреналина в мозговом веществе надпочечников заметно увеличивается при гипогликемии. Как только концентрация глюкозы в плазме крови уменьшается настолько, что становится ниже уровня, устанавливающегося после ночного голодания, регуляторные нейроны в центральной нервной системе, чувствительные к глюкозе, немедленно инициируют увеличение секреции адреналина мозговым веществом надпочечников. Этот процесс просекает особенно интенсивно в том случае, если уровень содержания глюкозы в плазме крови снизится до 50 мг/дл и менее, а уровень содержания адреналина возрастает в 25—50 раз по сравнению со средним. Тем самым увеличивается объем продуцирования глюкозы в печени, обеспечивается альтернативный субстрат в виде свободных жирных кислот, подавляется высвобождение эндогенного инсулина и угнетается опосредуемая инсулином утилизация глюкозы в мышцах. Многие клинические проявления гипогликемии, такие как тахикардия, сердцебиение, нервозность, дрожание и расширение диапазона значений пульсового артериального давления, являются вторичными по отношению к повышенной секреции адреналина.

Воздействие холода. Симпатическая часть нервной системы играет главную роль в поддержании нормальной температуры тела при воздействии холода. При снижении температуры рецепторы в коже и центральной нервной системе активируют центры гипоталамуса и ствола мозга, усиливающие симпатическую активность. Симпатическая стимуляция вызывает вазоконстрикцию в поверхностном сосудистом ложе, уменьшая тем самым потери тепла. Одновременно увеличению образования тепла способствуют дрожь при ознобе, генерирование тепла в процессе обмена веществ и мобилизация субстратов. Акклиматизация к длительному воздействию холода повышает способность генерировать тепло в процессе обмена веществ в ответ на симпатическую стимуляцию.

Потребление пищи. Умеренное потребление нежирной пищи подавляет, а переедание стимулирует деятельность симпатической части нервной системы. В результате снижения симпатической активности во время соблюдения поста или при голодании снижается интенсивность обменных процессов в организме, что может привести к развитию брадикардии и гипотензии. Повышенная симпатическая активность в периоды избыточного потребления высококалорийной пищи может способствовать увеличению скорости обмена веществ, связанному с длительным избыточным питанием.

Гипоксия. Длительное состояние гипоксии связано со стимуляцией симпатоадреналовой системы, и некоторые изменения в сердечно-сосудистой системе, наблюдаемые при гипоксии, могут быть следствием действия катехоламинов.

4 Динамика симпато-адреналовой системы при развитии стресс-ракции

Динамика симпато-адреналовой системы при развитии стресс-ракции.

При воздействии на организм стрессора развиваются определенные изменения активности САС, последовательность которых такова:

Первой реакцией на действие стрессора является опустошение гипоталамических депо норадреналина, что свидетельствует о первоначальном включении гипоталамуса и других структур ЦНС в развитие ответной реакции на действие стрессора.

Кроме того, активируются пептидэргические системы, обеспечивающих перестройку гипофизарно-адренокортикальной активности.

Предполагают, что именно с активацией норадренэргических структур связано повышение возбудимости ЦНС, которое наблюдают в первую фазу стресса. Действую на чувствительные к катехоламинам элементы ретикулярной формации, НА приводит в состояние повышенной активности норадренэргические элементы головного мозга и тем самым усиливает деятельность всей симпатоадреналовой системы. Следствием этого является повышение синтеза адреналина (А) в надпочечниках, эти процессы обуславливают увеличение уровня НА и А в плазме крови. В результате вторичного захвата способностью к которому обладает миокард, НА накапливается в миакарде, что способствует улучшению сократительной способности миокарда, возрастанию его возбудимости, сократимости, проводимости (положительные ино-, бадмо- и т.д. эффекты). Вслед за этим наблюдается накопление А и в гипоталамусе. Основная часть А в ЦНС имеет надпочечниковое происхождение, куда он проникает через гематоэнцефалический барьер. Его проницаемость для катехоламинов резко ограничена и отмечается только в отдельных зонах гипоталамуса. При развитии стресс-реакции проницаемость гематоэнцефалического барьера по отношению к А увеличивается, причем не только в тригерной зоне гипоталамуса, но и в других областях мозга.

В первую фазу стресса увеличивается выделение А и НА с мочой, что также свидетельствует об активации САС. Известно, что свободные катехоламины, обнаруживаемые в моче, составляют от 0,5% до 6% от общего их количества, подвергаемого метаболизму в организме. Но, несмотря на столь малую экскрецию, изменения их содержания в моче адекватно отражает общие направления сдвигов в САС.

Таким образом, при развитии общего адаптационного синдрома активируется САС, результатом чего являются следующие физиологические эффекты:

стимулируется гликогенолиз в печени, в результате распада гликогена возникает гипергликемия, повышается утилизация глюкозы в скелетных мышцах и некоторых других тканях, стимулируется липолиз и повышается в крови содержание свободных жирных кислот, повышаются тканевое дыхание и температура тела, усиливаются и учащаются сокращения сердечной мышцы, повышается кровяное давление, расширяются коронарные сосуды, расширяются бронхи и усиливается легочная вентиляция, увеличивается возбудимость коры головного мозга, повышается работоспособность скелетных мышц и т.д.

Все эти эффекты, несомненно, имеют адаптивное значение в различных острых стрессорных ситуациях. Активация САС обеспечивает реакции «битва-бегство».

Кроме того, активация САС приводит к стимуляции гипоталамо-гипофизарной – надпочечниковой системы (усиливается активность нейросекреторных клеток, синтез в них релизинг факторов, функционирование портальной системы, релизинг факторы стимулируют выработку гормонов аденогипофиза) в частности АКТГ, которые стимулирует выработку глюкокортикоидов: кортизола, гидрокортизола и т. д. (рис. 2.1.2., 2.1.3.).

В результате чего происходит значительное повышение энергетических запасов: возрастает уровень глюкозы (за счет глюконеогенеза) и свободных жирных кислот и т.д.. Однако чрезмерное выделение глюкокортикоидов приводит одновременно и к нежелательным эффектам (это называют платой за адаптацию): резко снижается интенсивность иммунных механизмов, происходит тимиколимфатическая атрофия, возрастает риск образования язв желудка, развития инфаркта миокарда (за счет спазма сосудов), также гипертрофируется кора НП (т.е. все выше перечисленное — триада симптомов, описанная Г. Селье).

Рис. 2.1.2. Схема регуляции секреции глюкокортикоидов в коре надпочечника посредством КРФ и АКТГ; отрицательная обратная связь тормозит в первую очередь секрецию КРФ (влияя на АКТГ лишь незначительно).

Рис. 2.1.3. Механизмы активации коры надпочечников при стрессе.

Кроме глюкокортикоидов в механизмах развития стресс-реакции важную роль играет гормон роста, тиреоидные и др. гормоны, механизмы секреции которых сходны с таковой глюкокортикоидов (рис.2.1.4).

Рис. 2.1.4. Схема адаптивных эффектов стресс – реакции и превращения их в повреждающие эффекты.

Таким образом, при развитии стресс – реакции выделяются многочисленные гормоны, взаимодействующие с рецепторами клеток – мишеней, в результате развиваются адаптивные и повреждающие эффекты стресс-реакции.

В результате активации стресс системы развиваются во многом сопряженных друг с другом эффекты среды стресс – реакции, за счет которых формируется «срочная» адаптация к факторам среды на уровне систем, органов, клеток, но которые при определенных условиях могут превращаться в повреждающие эффекты стресс – реакции (рис. 2.1.4.).

Первый адаптивный эффект стресс-реакции. Возросший «выброс» катехоламинов и других гормонов обеспечивает их увеличенное взаимодействие с соответствующими рецепторами клеток, в результате происходит активация механизма вхождения Са 2+ в клетку, повышение его внутриклеточной концентрации, активация протеинкиназ и как следствие — активация внутриклеточных процессов.

Глюкокортикоиды, концентрация которых при стрессе растет проникая в клетку, взаимодействуют с внутриклеточными ядерными рецепторами стероидных гормонов и активируют генетический аппарат клетки, вызывая экспрессию генов регуляторных и структурных белков, что приводит к образованию соответствующих мРНК, синтезу указанных белков и обновлению и росту клеточных структур, ответственных за адаптацию. При повторных действиях стрессора это обеспечивает формирование структурной основы устойчивой адаптации к данному стрессору.

Однако при чрезмерно сильной и или затянувшейся стресс-реакции, возрастающий избыток Са 2+ может приводить к повреждению клетки. При этом реализуется так называемая «кальциевая триада» повреждения миоцитов, которая складывается из необратимых контрактурных повреждений миофибрилл, нарушения функции перегруженных кальцием митохондрий и активации миофибриллярных протеаз и митохондриальных фосфолипаз. Все это может приводить к нарушению функции кардиомиоцитов и даже к их гибели и развитию очаговых некрозов миокарда. Этот повреждающий эффект связан с чрезмерным усилением второго адаптивного (липотропного) эффекта стресс-реакции.

Второй адаптивный эффект стресс-реакции состоит в том, что «стрессорные» гормоны активируют липазы, фосфолипазы и увеличивают интенсивность свободнорадикального окисления липидов (СРО), в результате чего повышается содержание свободных жирных кислот, продуктов СРО, фосфолипидов. Этот липотропный эффект стресс-реакции меняет структурную организацию, фосфолипидный и жирнокислотный состав липидного бислоя мембран и тем самым меняет липидное окружение мембраносвязанных функциональных белков, т. е. ферментов, рецепторов, каналов ионного транспорта, ионных насосов, локализованных в мембране.

Адаптивное значение липотропного эффекта стресс-реакции, велико, так как этот эффект может быстро оптимизировать активность всех мембраносвязанных белков, а следовательно, функцию клеток и органа в целом и таким образом способствовать срочной адаптации организма к действию факторов среды. Однако при чрезмерно длительной и интенсивной стресс-реакции усиление именно этого эффекта, может привести к повреждению мембран и это играет ключевую роль в превращении адаптивного эффекта стресс-реакции в повреждающий.

Третий адаптивный эффект стресс-реакции состоит в мобилизации энергетических и структурных ресурсов организма, которая выражается в увеличении в крови концентрации глюкозы, жирных кислот, нуклеотидов, аминокислот, а также в мобилизации функции кровообращения и дыхания. Этот эффект приводит к увеличению доступности субстратов окислению, исходных продуктов биосинтеза и кислорода для органов, работа которых увеличена. Главную роль в мобилизации резерва углеводов и увеличения поступления в кровь глюкозы играют катехоламины и глюкагон за счет прямой активации гликогенолиза и гликолиза через аденилатциклазную систему в печени, скелетных мышцах и сердце. При этом глюкагон выделяется при стрессе несколько позже катехоламинов и как бы дублирует и подкрепляет эффект катехоламинов. Особую значимость это приобретает в условиях, когда действие катехоламинов реализуется не полностью из-за десенситизации b-адренорецепторов, вызванной избытком катехоламинов. В этом случае активация аденилатциклазы осуществляется через глюкагоновые рецепторы.

Другим источником глюкозы является возникающая под влиянием глюкокортикоидов активация глюконеогенеза в печени и скелетных мышцах. Оба гормональных механизма мобилизации глюкозы при стресс-реакции обеспечивает своевременное поступление глюкозы к таким жизненно важным органам, как мозг и сердце.

Мобилизация энергетических и структурных ресурсов выражена при стресс-реакции достаточно сильно и обеспечивает «срочную» адаптацию организма к стрессорной ситуации, т. е. является адаптивным фактором. Однако в условиях затянувшейся интенсивной стресс-реакции, когда не происходит формирования «структурных следов адаптации», иными словами, не происходит увеличения мощности системы энергообеспечения, интенсивная мобилизация ресурсов перестает быть адаптивным фактором и приводит к прогрессирующему истощению организма.

Четвертый адаптивный эффект стресс-реакции может быть обозначен как «направленная передача энергетических и структурных ресурсов в функциональную систему, осуществляющую данную адаптационную реакцию». Одним из важных факторов этого избирательного перераспределения ресурсов является хорошо известная, локальная по своей форме «рабочая гиперемия» в органах системы, ответственной за адаптацию, которая одновременно сопровождается сужением сосудов «неактивных» органов. Действительно при стресс-реакции, вызванной острой физической нагрузкой, доля минутного объема крови, протекающей через скелетные мышцы, возрастает в 4—5 раз, а в органах пищеварения и почках этот показатель, напротив, уменьшается в 5—7 раз по сравнению с состоянием покоя. Известно, что при стрессе развивается увеличение коронарного кровотока, что обеспечивает увеличенную функцию сердца. Возможно, это происходит также за счет других органов. Главная роль в реализации этого эффекта стресс-реакции принадлежит катехоламинам, которые вызывают сужение сосудов в тех органах и тканях, где этому не препятствует «рабочая гиперемия» и мобилизация закрытия запасных капилляров.

Ключевым локальным фактором «рабочей гиперемии», является продуцируемый эндотелием сосудов оксид азота (N0), главный вазодилататор, продукция которого возрастает параллельно росту потребления кислорода. «Рабочая гиперемия» обеспечивает увеличенный приток кислорода и субстратов к работающему органу путем вазодилатации в этом органе. Вместе с тем при чрезмерно выраженной стресс-реакции может развиться ишемия неработающих органов.

Пятый адаптивный эффект стресс-реакции состоит в том что при однократном достаточно сильном стрессорном воздействии вслед за «катаболической фазой» стресс-реакции (третий адаптивный эффект) реализуется значительно более длительная «анаболическая фаза». Она проявляется генерализованной активацией синтеза нуклеиновых кислот и белков в различных органах. Эта активация обеспечивает восстановление структур, пострадавших в катаболическую фазу, и является основой формирования структурных «следов» и развития устойчивого приспособления к различным факторам среды. Помимо мобилизации функции клетки и ее энергообеспечения, этот процесс имеет «выход» на генетический аппарат клетки, через действие глюкокортикоидов, что приводит к активации синтеза белков. Кроме того, показано, что в процессе развертывания стресс-реакции активируется секреция «приторможенных» в начале реакции соматотропного гормона (гормона роста), инсулина, тироксина, которые потенцируют синтез белков и могут играть роль в развитии анаболической фазы стресс-реакции и активации роста клеточных структур, на которые приходилась наибольшая нагрузка при стрессорной мобилизации функции клеток. Вместе с тем следует иметь в ви­ду, что чрезмерная активация этого адаптивного эффекта, по-видимому, может приводить к нерегулируемому клеточному росту. В частности, наряду со стрессорным иммунодефицитом, это может играть роль в механизме онкогенного эффекта стресса».

Активность и реактивность стресс-системы регулируются различными механизмами. Важную роль играют процессы саморегуляции (рис.2.4-2.6.). Механизм саморегуляции реализуется за счет влияния друт на друга компонентов самой системы.

Рис.2.1.5. Связь между нервными и эндокринными механизмами в гипоталамо-гипофизарной системе

Рис. 2.1.6. Основные петели обратной связи в нейроэндокринной системе, отражающих взаимодействие ее компанентов.

Кроме того, важное значение имеют стресс лимитирующие системы, способные ограничивать активность стресс-системы и чрезмерную стресс-реакцию на центральном и периферическом уровнях регуляции.

Оставьте первый комментарий

Оставить комментарий

Ваш электронный адрес не будет опубликован.


*